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The trajectories of electrically charged tracer particles travelling around a charged 
sphere subjected to a simple shear flow have been calculated. This is a limiting case of 
the relative trajectories of two unequal-sized spheres when the radius ratio aJa, 
approaches zero. Until now these trajectories have been calculated by assuming the 
additivity of hydrodynamic and electrostatic forces, while neglecting the electroviscous 
coupling forces. These electroviscous forces are long range and can significantly alter 
the relative trajectories of spheres. When ul/a2 + 0, it is found that these trajectories 
depend on two parameters, a and p, which depend on the surface charge density of the 
tracer particle and the sphere. The relative trajectories of charged particles are 
qualitatively different from those of neutral particles. There exist six intervals of a- 
values for which the trajectories of the tracer particle show different features. Several 
new types of trajectory appear, besides the open and closed trajectories for neutral 
particles, which we refer to as uni- and bidirectional infinite length trajectories, uni- 
and bidirectional finite length trajectories, open returning trajectories, and prolate, 
oblate and circular closed trajectories. This richness of possible trajectories is the result 
of three electrokinetic phenomena, affecting particle motion : electro-osmotic slip, 
electrophoretic and diffusiophoretic motion. 

1. Introduction 
The problem of two-sphere interactions in a simple shear flow has been studied 

extensively over the past 50 years in the fields of both fluid dynamics and colloid science. 
These interactions form the basis of our understanding of the behaviour of suspensions 
of spheres subjected to flow. Despite the numerous theoretical and experimental 
studies, our knowledge of two-sphere interactions is still incomplete, especially for 
spheres with an electrical surface charge and for spheres coated with polymer or 
polyelectrolyte. The main difficulty is that for such systems the hydrodynamic and 
colloidal forces are not additive, but give rise to coupling forces, which we call 
electroviscous (van de Ven 1988, 1989) and viscopolymeric (De Witt & van de Ven 
1992) forces. In this paper we address the problem of the effect of electroviscous forces 
on two-sphere interactions in a simple shear flow. 

For systems in which the colloidal and hydrodynamic forces are additive, two-sphere 
interactions in shear are well understood. This applies for instance to two spheres in 
shear subjected to van der Waals attraction. The relative trajectories of two spheres of 
arbitrary radius ratio in a linear shear flow (in a Newtonian liquid and for low 
Reynolds numbers) are given by Kao, Cox & Mason (1977) who generalized earlier 
work on two-sphere interactions in a simple shear flow by Arp & Mason (1977), 

t On leave from Ukrainian Academy of Sciences, Kiev, Ukraine. 
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Batchelor & Green (1972) and Lin, Lee & Sather (1970). Van der Waals forces can be 
included in the theory by assuming that these forces only act along the line of sphere 
centres, which results in an additional term in the relative velocity between the spheres. 
This was first done by Curtis & Hocking (1970) and the relative trajectories were 
described by van de Ven & Mason (1976). Other colloidal forces, such as electrostatic 
forces acting between charged spheres, were included in theory in the same way as van 
der Waals forces (van de Ven & Mason 1976, 1977 ; Zeichner & Schowalter 1977 ; Adler 
1981), simply by assuming that hydrodynamic and colloidal forces were additive. The 
same assumptions were made in the theory of gravity-induced coagulation (Melik & 
Fogler 1984). However, it was shown by one of us (van de Ven 1988, 1989) that the 
assumption of additivity is not valid, since the hydrodynamic and electrostatic forces 
are coupled. This coupling arises from the fact that a fluid containing electrically 
charged colloidal particles also contains ions (to allow for electroneutrality). These 
ions are subject to an electric field, arising from the potential difference between the 
surface of a particle and the bulk of the fluid. When an electric field of strength E is 
acting on a fluid containing ions it produces a body force per unit volume of magnitude 
pE, where p is the charge density of the fluid (i.e. the number of charges per unit 
volume). This body force introduces an additional term in the Stokes equation, thus 
modifying the hydrodynamic forces and torques. These electroviscous forces can be of 
long range, because hydrodynamic flow fields can polarize the ionic atmosphere (the 
electric double layer) which surrounds each particle. For a sphere in a simple shear flow 
this leads to the appearance of an electric quadrupole moment (Dukhin & van de Ven 
1993), the influence of which can be felt far beyond the electric double layer. 

In this paper we address a limiting case of the problem of the interaction between 
two electrically charged spheres in a simple shear flow : a small charged tracer particle 
interacting with a much larger charged sphere. It is hoped that this limiting case will 
also provide qualitative insight for large tracer particles, similar to the problem of small 
tracer particles interacting with a neutral sphere. The streamlines around a sphere, 
calculated by Cox, Zia & Mason (1968), turned out to be qualitatively similar to the 
relative trajectories of two spheres of equal size. The theory presented here is a natural 
extension of the theories by Cox et al. (1 968) for a neutral sphere, by van de Ven (1988) 
for streamlines around a charged sphere with a low zeta-potential but for arbitrary 
ionic strength, and by Dukhin & van de Ven (1993) for the streamlines around a 
charged sphere with a thin double layer but with arbitrary zeta-potential. Here we will 
assume that the tracer particle is much smaller than the sphere and that the ionic 
strength is sufficiently high so that the double layer thickness K-' is much smaller than 
the radius a of the sphere 

This condition allows us to make use of thin-double-layer theory (Dukhin & Derjaguin 
1974). When condition (1) is satisfied, the various polarization fields (hydrodynamic, 
electric and concentration fields) arising from the action of the hydrodynamic flow 
around a sphere are known (Dukhin & van de Ven 1993). These polarization fields 
determine the intensity of long-range interparticle interactions, which are fun- 
damentally different from the short-range interaction. In the short-range region 
classical equilibrium surface forces (Derjaguin 1989), are significant. The thickness of 
this region adjacent to the particle surface is approximately K-'. In the long-range zone 
the classical surface forces are negligible and only non-equilibrium forces caused by 
double-layer polarization in the hydrodynamic flow act between the particles. The 
characteristic distance in the long-range zone is the particle radius a. In the case of thin 
double layers (condition (I)), interparticle interactions can be considered separately in 

T = K a %  1. (1) 
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I I 
FIGURE 1. Possible trajectories of an uncharged tracer particle around an uncharged sphere in a 
simple shear flow in the equatorial plane x1 = 0 (schematic): (a) an example of an open trajectory, (b) 
of a closed trajectory, while (c) represents the limiting trajectory separating open from closed ones; 
r,nnin is the distance of nearest approach of a tracer particle moving along the limiting trajectory 
towards the sphere. Inset: ( X I ,  X,, X,) and ( r ,  8,$) are Cartesian and polar coordinate systems 
describing the relative position of a tracer particle, represented by a black dot, in a simple shear flow 
of gradient G with respect to a sphere at the origin. 

these two zones. When long-range interactions produced by double-layer polarization 
in a shear flow are significant, they have to be taken into account when trajectories of 
interparticle motion are being calculated. Short-range interactions determine only the 
final stage of the interaction; either particles will aggregate in primary or secondary 
minima, or aggregation will not occur when the disperse system is stable. 

Since we are only considering interactions between small tracer particles and a big 
sphere, perturbations caused by tracer particles in the polarization fields of the sphere 
are small and can be neglected. 

2. Trajectory equations 
It is well known that the streamlines around a sphere in a simple shear flow are three- 

dimensional and can be presented either in a spherical coordinate system (r ,  8, $) or in 
a Cartesian coordinate system (XI, X,, X,) (see inset of figure 1). Possible equatorial 
streamlines (in plane X,, X,) around a neutral sphere are shown schematically in figure 
1. For small tracer particles, the streamlines are equivalent to their trajectories. Two 
types of trajectories of tracer particles are possible : open separating trajectories and 
closed orbits. These two types are separated by a surface of limiting trajectories. 

The motion of a charged tracer particle is the result of three different kinds of 
electrokinetic phenomena. Firstly, electro-osmotic slip in the double layer of the sphere 
produces a hydrodynamic flow inside the double layer which affects the tracer particles 
surrounding the sphere. Secondly, an electric field with quadrupole symmetry, 
originating from the polarization of the double layer in shear flow acts on the charges 
of the tracer particles, resulting in electrophoretic motion. Thirdly, a concentration 
field also of quadrupole symmetry, and also caused by the polarization of the double 
layer in shear flow, acts on the double layers of the tracer particles resulting in 
diffusiophoresis (Dukhin & Derjaguin 1974). 
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Quadrupole symmetry of the electric and concentration fields is determined by the 
rotation of the particle about the XI-axis in shear. The motion of the liquid relative to 
the surface of the particle caused by its rotation will carry with it the ions in the diffuse 
part of the double layer. Convective transfer of ions in the diffuse part of the double 
layer gives rise to a tangential electric current relative to the surface of the particle. The 
distribution of this surface current was found by Dukhin & van de Ven (1993) using 
the known velocity profiles. It turned out that in the first and third quadrants of the 
Cartesian system (cf. figure 1 )  the current is directed away from the surface, whereas 
in the second and fourth quadrants it is directed towards the surface. The direction of 
the radial component of the electric field strength E, is similar and, consequently, a 
positive charge is accumulated near the surface in the first and third quadrants and a 
negative charge in the second and fourth ones. This means that the polarization of the 
double layer by the hydrodynamic flow results in the emergence of an electric 
quadrupole moment. The same reasoning can be applied to the concentration field. 
The quadrupole electric field will carry ions out of the double layer, thus causing 
electro-osmotic slip. 

Therefore the components of the velocity of a tracer particle, in a spherical 
coordinate system fixed at the centre of the sphere, can be represented as 

(2 4 

(2 b) 

(2 c) 

dr 
- = GA”(r) sin2 8 sin 24 + vef E, + vdf V, n, dt 

d8 
dt 

dt  

:Grk(r) sin 28 sin 24 + vef E, + vdf V, n, y -  = - 

d 4  r sin 8- = :Gr sin O[ 1 + k(r) cos 2$] + vef E, + vdf V, n, 

where vef and vdf are the electrophoretic and diffusiophoretic mobilities of the tracer 
particles, r is the distance between sphere centres, like all other distances rendered 
dimensionless through division by the sphere radius a, and G is the rate of shear. The 
functions A”(r) and &r) characterize the hydrodynamic flow caused by the electro- 
osmotic slip in the double layer of the sphere. E and n are the electric and concentration 
fields, respectively, expressions for which are given by Dukhin & van de Ven (1993). 
Inserting these expressions in (2) results in 

Here 

3v, 3a . 
= G A ( r ) + - - + -  sin28sin2#, d r [  dt r2G 4r4 1 

r 5  2 
2 4r2 4 y 4 ’  

A(r) = ---+- 

1 B(r) = 1-- r5 ’ 

(4)  

( 5 )  



Trajectories of charged tracer particles 189 

and Q2, n,, & are the electric, concentration and hydrodynamic quadrupole moments. 
The values of these moments depend upon the values of electrokinetic potential, <,s, and 
the Stern potentials, ~, of the sphere and are equal to 

n, =-[-+-I, 5n,G f' f- 

&=- 12'k2T2[&62-<lncosh~s n , 

3K2 Dt D- 

-1 qa2e2z2 

(7) 

(9) 

where k is the Boltzmann constant, T the absolute temperature, D' are the diffusion 
coefficients of the positive and negative ions, e is the dielectric permittivity, 9 the 
viscosity, e is the charge of a proton, z the valency of the ions, n,, is the bulk electrolyte 
concentration, tS = ezcS/4kT, 62 = ezQ2/kT, and the functions f * equal 

The above equations are for symmetric electrolytes in which z+ = -z-  = z. The 
parameter a characterizes the influence of the charge of the tracer particle. 

In our analysis we shall follow the paper by Cox et al. (1968), devoted to the 
calculation of trajectories of uncharged tracer particles around an uncharged sphere. 

Dividing ( 3 0 )  by (3b), and integrating yields 

cose = Cf(r ) ,  (1 1) 

C being an arbitrary constant of integration, and 

f ( r )  = [r3 - [ql+ ;( 1 + a) PI-;, (12) 

where [?I] is the intrinsic viscosity of a suspension of charged spheres, given by 

Similarly dividing (3 c) by ( 3  b) and integrating yields 

where g(r) is equal to 
sin 6 cos 4 = f ( r )  [D + (I + a)  g(r)lt,  (14) 

(1 5 )  

Thus we have reached the conclusion that trajectories of charged tracer particles 
around a charged sphere are described by a set of equations very similar to that for 
uncharged spheres. In a Cartesian coordinate system these equations may be written 
in the alternative form 

g(r) = Sjl,y-310 dY. 

-5 = Crf(r), (16) 

x2 = r f ( r )  [D + (1 + a)g(r)];, (17) 
7 F L M  263 
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where C and D are constants of integration called trajectory constants, and f ( r )  and 
g(r )  are defined by (12) and (15). 

When the parameters /3 and a: are equal zero, the functionfreduces to the function 
for an uncharged sphere and uncharged tracer particle. When a: = 4KJG and V, 4 0, 
the function f corresponds to the case of trajectories of uncharged tracer particles 
around a charged sphere. Thus we can consider the influence of the surface charges of 
tracer particle and sphere on the trajectories by varying the values of the two 
parameters CL and p (defined by (6) and (13)). This will be done in the following sections. 

3. Trajectories of charged tracer particles in the equatorial plane 
3.1. General considerations 

Trajectories of tracer particles around a charged sphere in shear flow depend on the 
surface characteristics of both surfaces - sphere and tracer particle. Hence the 
trajectory equations contain two parameters a and p. The parameter /3 characterizes 
the influence the surface charge of the sphere, whereas a: depends on the properties of 
both surfaces. 

The parameter p is positive for all <-potentials of the sphere. A decrease in the 1;- 
potential of the sphere leads to a decrease in /3, which equals zero for an uncharged 
sphere. Realistic values of p are much less than 1 since /3 is equal to the magnitude of 
the primary electroviscous effect: ,8 = [77]-%, where [7] is the intrinsic viscosity of the 
suspension. 

The range for the parameter CL depends on the signs of the <-potential of the sphere 
gs, and of the tracer particle, f .  When the tracer particles are uncharged, a = $/3 and, 
consequently, a > 0. When the signs of <s and Ct are the same, according to (6) an 
increase in the absolute value of leads to a decrease in a. If the electrophoretic and 
diffusiophoretic mobilities of the tracer particles are sufficiently large, a might be zero 
or negative. This is the case when a < :/I. When the signs of Cs and <t are opposite, an 
increase in the absolute value of Cs leads to an increase in a. For this case a > $p. 

In order to calculate how a depends on the <-potential of the tracer particles, the 
electrophoretic and diffusiophoretic mobilities of the tracer particles have to be known. 
The thin-double-layer condition (1) might not be valid for a tracer particle because its 
radius has to be much smaller than the radius of the sphere. Thus a tracer particle is 
usually not characterized by a thin double layer but by a thick one. In such a case the 
influence of the relaxation effect on the electrophoretic mobility of a tracer particle is 
negligible and, according to Helmholtz's theory vef,  equals 

The diffusiophoretic mobility of particles with a thick double layer is very small and 
the influence of this phenomenon on the trajectories of tracer particles can be omitted. 
Therefore, (6) and (13) can be transformed to the following more convenient form, 
corresponding to a system of tracer particles with a thick double layer: 
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where we have introduced the ionic drag coefficients 

2ek2T2 
37e2z2D* ’ 

mf = 

Equations (19) and (20) will be used below to illustrate the general conclusions 
obtained from a qualitative analysis. A disperse system of colloidal particles suspended 
in an aqueous KC1 solution was chosen as an example. For the electroviscous effect to 
be considerable, a realistically large value of /i’ must be used because a decrease in /3 
leads to a decrease in a. For this reason the value of 7 (= KU) has to be small as possible, 
while still satisfying condition (1). A good choice is 7 = 10, since for smaller values the 
double layer can no longer be considered thin. The dependence of /i’ on Cs shows a 
maximum in because of the relaxation effect. The maximum value of /i’ is achieved 
when 5 M 100 mV for a one-one electrolyte. Higher valencies result in lower values of 
a. The illustrations presented below correspond to this realistic disperse system. 

Before discussing the various possible trajectories between charged tracer particles 
and a charged sphere let us first discuss the shape of the various functions that enter 
in the trajectory equations. Rewriting (3u) as 

dr - Gh(r) sin2 8 sin 2q5 
dt 2r2 

shows that the function h(r) =f(r)-3 determines whether the velocity of approach or 
recession is positive or negative. This function h(r) has one extreme point, r,, given by 

r, = (1 +a); 
at which the function h(r) equals 

This extreme value is positive when a > a*, where 

a* = (1 +g/i’):- 1 

and negative when a < a*. When a < a* two distances appear, rl and r2, at which 
h(rJ = 0 (see figure 2). When a = $,tI, r1 = 1 and for smaller values of a, h(r) is zero at 
only one value of r (i.e. for r = rJ. The various shapes of h(r) for different values of 
a are shown in figure 2 for p = 0.354. The corresponding functionf(r) = h(r)-i is also 
shown for the same range of a-values, as is the shape of the function g(r), defined by 
(15). It can be shown that g(r) remains finite when f(rJ = & GO, by expanding f ( r i )  
around ri, changing to a new variable s = r+e  and performing the integral in (15) 
between the limits + e ,  e being a small parameter. 

Besides the critical values a* and $,!I, other critical values of a exist. In the equatorial 
plane (x = 0, C = 0) all trajectories are coplanar. The tangential velocity dq5/dt can 
change sign when the absolute value of a is more than 1. This can be seen by 
considering (3 c) ; d#/dt becomes zero when equation 

1 +( 1 - ~ ) c o s  2$6 = 0 

has at least one solution. This condition is satisfied when 1011 3 1. Hence one can expect 
qualitatively different trajectories for la1 > 1 as compared to la1 < I and thus a = f 1 
are also critical values of a. 

A final critical value can be obtained by considering the minimum distance of 
7-2 



(4
 

1 .o
 

1.
1 

1.
2 

(b
) 

1 .o
 

1.
1 

1.
2 

-1
0 

I 

(4
 

1 .o
 

1.
1 

1.
2 

I i 
I 

r 

-3
 1.

0 
1.

1 
1.

2 
1.

3 
1.

4 
1.

5 
r 

1.
0 

1.
1 

1.
2 

1.
3 

1.
4 

1.
5 

r 
FI

G
U

R
E

 
2.

 G
ra

ph
s 

of
 t

he
 f

un
ct

io
ns

 (
a

) h
(r

), 
(b

)f
(u

) a
nd

 (
c)

 g
(r

) f
or

 v
ar

io
us

 v
al

ue
s 

of
 a

 f
or

 a
 d

is
pe

rs
e 

sy
st

em
 s

us
pe

nd
ed

 in
 a

n 
aq

ue
ou

s 
K

C
I 

so
lu

tio
n,

 
7
 =

 1
0,

 5 
=

 1
00

 m
V

, p
 =

 0
.3

54
. (

i) 
A

n 
ex

am
pl

e 
of

 i
nt

er
va

l 
a 

>
 a
* 

(a
 =

 0
.2

5)
; (

ii)
 a

n 
ex

am
pl

e 
of

 i
nt

er
va

l 
a*

 >
 a

 >
 i@

' (
a

 =
 0

.2
4)

; 
(ii

i) 
an

 e
xa

m
pl

e 
of

 
in

te
rv

al
 gp

 >
 a

 >
 -
 1 

(a
 =

 0
.2

);
 (i

v)
 a

n 
ex

am
pl

e 
of

 in
te

rv
al

 a
 <

 -
 1

 (
a

 =
 -
 1.

1)
. T

he
 c

oo
rd

in
at

e 
of

 t
he

 m
in

im
um

 v
al

ue
 o

f 
h(

r)
 is

 d
en

ot
ed

 a
s 

Y, 
an

d 
th

e 
ro

ot
s 

as
 r

l 
an

d 
r2

. F
or

 (i
-ii

i) 
1 

<
 Y 

<
 1

.2
, w

hi
le

 f
or

 (
iv

) 
1 

<
 r 

<
 1

.5
. 



Trajectories of charged tracer particles 

7 
193 

FIGURE 3. The dependence of rmin on a: for p = 0.354. 

approach a tracer particle can have when approaching the sphere from infinity. This 
limiting approach distance is reached when the particle travels on the limiting 
trajectory separating open from closed trajectories (see figure 1). This follows directly 
from (11) and (14). The closest approach is in the equatorial plane C = 0, and if 
D > 0 closed orbits are impossible when (1 +a)g(r )  > 0. Thus this limiting trajectory 
is characterized by the trajectory constants C = D = 0 and thus its trajectory equation 
is 

The minimum distance of approach is reached when 4 = 0 and thus rmin satisfies the 
equation 

cos# = + f ( r ) [ ( l  +a)g(r)$.  (26) 

The dependence of rmin on a has been calculated for p = 0.354 and the results are 
shown in figure 3.  It can be seen that rmin decreases with increasing a and for some 
value, a,, becomes equal to one. For /3 = 0.354 it is found that a. = 0.63. For values 
of a > a. closed trajectories are impossible because the value of rmin becomes less than 
one, which is physically impossible. The reason for the decrease of rmin with increasing 
CY is related to the two mechanisms of particle motion. The first mechanism is the 
motion of particles by hydrodynamic flow, induced by electro-osmotic slip in the double 
layer of the sphere. The second mechanism is electrokinetic transport in the electric 
field. If the signs of the <-potentials of the sphere and tracer particles are the same, these 
two mechanisms will move particles into opposite directions, because electrophoretic 
and electro-osmotic velocities of equally charged surfaces have an opposite sign. The 
first mechanism causes repulsion of the tracer particles from the sphere. The magnitude 
of this repulsion is characterized by the value of /3 and increases with an increase in p .  
The parameter a characterizes the second mechanism which causes tracer particle 
attraction to the sphere because its effect goes in the opposite direction. Consequently, 
for constant /3, rmin has to decrease when a increases because the electrophoretic 
attraction compensates at least partially for the effect of hydrodynamic repulsion. This 
trend is reflected in figure 3. 

The effect of electrophoretic attraction disappears for uncharged tracer particles for 
which a = $I. In this case an increase in p must lead to an increase in rmin. The 
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0 0.25 0.50 0.75 P 
FIGURE 4. The dependence of rmzn on p for uncharged tracer particles suspended in aqueous KCl 

(7 = 10 and a = ip). 

Case a-interval Comments 
(9 a >  1 d$/dt changes sign; 2 stagnation points 

(ii) a 0 < a < 1  Closed trajectories impossible 
(iii) a* < a < a. Closed trajectories possible 
(iv) drldt = 0 at r = rl and r = r2 
( 4  dr/dt = 0 at r = r2 
(Vi) a < - 1  d$/dt changes sign; 4 stagnation points 

$4 < a < a* 
- 1 < a < $/? 

TABLE 1. Various cases of relative trajectories of charged tracer particles and a charged sphere 
(p = 0.354) in simple shear 

numerical solution of (27) confirms this qualitative conclusion. The dependence of rmin 
on p obtained numerically is plotted in figure 4. It can be seen that rmin increases 
linearly with p. It was shown earlier (van de Ven 1988) that rmin increases linearly with 
$ for low potentials. Since for low potentials p cc $, the present results are in 
agreement with the previous study and show that this linear increase extends well 
beyond the condition of low potentials. 

From the above discussion it can be seen that there exist a number of critical values 
of a, i.e. a = 1, a0, a*, $p and - 1, from which one can expect that the interactions of 
tracer particles with a sphere will depend on the interval in which a lies. Qualitative 
different trajectories are expected for the various intervals. The various cases that are 
possible are summarized in table 1. 

3.2. Specific examples 
Case (i) a > I 

This case corresponds to high 5-potentials of the tracer particle. The minimum 
values of 6, determined by the condition a = 1 ,  are given in table 2 for two disperse 
systems. It can be seen that this case is realized only for extremely high charged 
particles. However, although rare, the existence of a disperse system with a > 1 is not 
forbidden by any physical law. Also, the primary electroviscous effect becomes larger 
at smaller values of KO. Although the thin-double-layer theory then no longer applies, 
qualitatively similar effects are expected. 



Trajectories of charged tracer particles 195 

KC1 a =  1 a,, = 0.63 a* = 0.245 a = $3 a = - 1  

LiHCO, a =  1 a, = 0.945 a* = 0.478 a = $3 a=-1  

= 0.236 
,b' = 0.354 -412 -214 - 80 0 658 

= 0.44 
,b' = 0.66 -221 -201 - 43 0 462 

TABLE 2. Values of [-potentials of tracer particles (in mV) corresponding to the critical values of 
a (a = k l,a,,,$,b', a*) for disperse system with 7 = 10 and = 100 mV suspended in a solution of 
either KCl (m' = 0.184) or LiHCO, (m+ = 0.35, m- = 0.338) 

When a > 1, the radial velocity component dr/dt is always positive in the first 
quadrant (0 < $ < in). This can be concluded from (29) and the shape of the function 
h(r) for a > 1. However, d$/dt can become negative for low values of $ and small 
distances of separation. Equation (25) determines the curve at which d$/dt = 0. For 
the positions of tracer particles between this curve and the sphere, d$/dt < 0. The 
maximum value r on this limiting curve (r,,) corresponds to $ = 0 and is equal to 

The points with coordinates $ = 0 or $ = n and r = r,, are stagnation points because 
both components of the particle velocity are zero. These points are located on a 
limiting trajectory separating two kinds of trajectories. Trajectories lying outside this 
trajectory are characterized by positive values of dr/dt and d$/dt everywhere. These 
trajectories correspond to the ordinary open trajectories similar to an uncharged 
sphere (cf. figure 1). 

The ordinary closed trajectories presented in figure 1 are impossible when a > 1, 
since a > a. and a, < 1. Thus the limiting trajectory containing the stagnation point 
separates ordinary open trajectories from trajectories of a new kind. This limiting 
trajectory is characterized by a critical value of the trajectory constant D, D,,, which 
can be found from the condition that the stagnation point belongs to the limiting 
trajectory. As a result we obtain 

Trajectories of tracer particles around a charged sphere for the case a > 1 are plotted 
schematically in figure 5. We can distinguish four different kinds of trajectory. The first 
kind are the ordinary open trajectories. They are characterized by the values of D 
determined by 

Not all trajectories with D > D,, are, however, open trajectories. A new type of 
trajectory is possible which occurs when the initial position of the tracer particle is 
sufficiently close to the sphere. When D is in the interval 

(3 1) 

(32) 

the trajectory has two branches. One branch is the ordinary open trajectory, the other 
is located near the sphere and is symmetrical around the X,-axis. The second branch 

D > Dcr. (30) 

D* > D > D,,, 

1 where D* is equal to D* =f"o- (1 +a)g(l), 
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I 

FIGURE 5. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane ( X I  = 0) for a > 1 : (a) an example of an open trajectory, (b) of a 
trajectory of finite length, (c)  of a bidirectional trajectory, ( d )  of a unidirectional trajectory, (e)  of a 
trajectory of finite length symmetrical around the X,-axis, (f-i) are the various limiting trajectories, 
and ( j )  is a stagnation point. The angles $* and $,, determine the region where the sources of 
bidirectional trajectories are located. 

of the trajectory starts and ends on the surface of the sphere. We shall refer to this type 
of trajectory as a ‘finite length trajectory’ (following Bachelor 1982). Numerical 
calculation shows that D* = 0.409, D,, = 0.408 when a = 1.1 and /3 = 0.354. 

The limiting trajectory characterized by D,, also consists of two branches. The 
trajectories characterized by values of D less than D,, lie inside the first branch of this 
limiting trajectory and outside the second branch. All these trajectories contain at least 
one point of the sphere surface. This point can either be a source or a sink. If the source 
of a trajectory is located on the sphere between the angles $* < $ < $,,, where 

cos $* =f(l) [D,, + (1 + a)g(  l)]:, 
cos 2$,, = l /a,  

(33) 
(34) 

the tangential component of the velocity of the tracer particle changes direction on this 
trajectory (cf. (25)). These trajectories will be called ‘bidirectional’. This type of 
trajectory is separated from one side by the limiting trajectory with constant D,, and 
from the other side by a limiting trajectory with constant D,, given by 

D, = ___- cos $cr (1 + a)  g( I). 
f“1) 

(35) 

Thus the bidirectional (infinite length) trajectories are characterized by values of D in 
the interval 

where Df =.0.301 when a = 1.1 and /3 = 0.354. 
When D is less than D,, d$/dt does not change sign. This type of trajectory we call 

‘unidirectional ’. According to trajectory equation (14), the length of trajectories 
characterized by positive values of D is infinite when g(r)  > 0 (as is the case here). Thus 

D,, > D > D,, (36) 
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unidirectional trajectories of infinite length are characterized by values of D in the 
interval 

D, > D > 0. (37) 
The last type of trajectory is one of finite length symmetrical around the 

X,-axis. These trajectories are characterized by negative values of D in the interval 
D, < D < 0, where 

D, = -(1 +.)g(l). (38) 
The shape of the trajectories presented in figure 5 reflects the balance of the 

hydrodynamic and electrodynamic factors of particle interaction. In the region near 
the X,-axis the charged tracer may move against the flow along a trajectory of finite 
length. Thus in this region the combination of electrophoretic and electro-osmotic 
motion is stronger than the purely hydrodynamic interaction. The intensities of these 
factors are equal at the stagnation points. 

However, the region where the electrodynamical factor predominates is much 
smaller than the region where the hydrodynamic factor is stronger. Nevertheless, the 
influence of the electrodynamical interaction is strong enough and causes qualitative 
changes in the trajectories, such as an absence of ordinary closed trajectories. 

It is also important to mention that the electrodynamical interaction might lead to 
deposition of the tracer particles. In the case of uncharged particles there is no 
deposition according to the classical analysis. Charged tracer particles deposit on the 
surface of the large particle in the second and fourth quadrants and near the X,-axis 
(see figure 5). 

The decrease of the electrokinetic potential reduces the importance of the 
electrodynamical interaction, as shown in the following examples. 

Case (ii) a, < a < 1 
A decrease in a leads to a decrease in q5cT and q5*. When a becomes equal to 1, both 

q5cr and q5* become equal to zero. As a result, bidirectional trajectories transform into 
unidirectional trajectories and unidirectional ones symmetrical about the X,-axis 
disappear. In the range a, < a < 1 there are three types of trajectory, as shown 
schematically in figure 6. The shape of the unidirectional trajectories is determined by 
the fact that dr/dt is zero when q5 = +nn. Since a > a, no closed orbits exist. 

Open trajectories are separated from unidirectional (infinite length) ones by a 
limiting trajectory passing through the point ( I  = 1, q5 = 0), which is consequently 
characterized by the trajectory constant D*. Hence open trajectories are characterized 
by D > D* (D* = 0.073 when a = 0.7 and p = 0.354), unidirectional trajectories by 
0 < D < D* and finite-length trajectories by D, < D < 0. 

The decrease of the electrokinetic potential causes the decay of the electrodynamical 
interaction. In this case the hydrodynamics predominate everywhere because the 
direction of the particle motion coincides with the direction of the flow in each point. 
However, the electrodynamical interaction is still strong enough to eliminate the closed 
trajectories. As a result, the possibility of tracer particle deposition remains in this 
range of electrokinetic potentials. It can also be seen that the trajectories reflect the 
quadrupole symmetry of the interaction. 

Case (iii) a* < a < a. 
If the value of a becomes less than ao,, ordinary closed trajectories appear because 

rmiF becomes greater than 1. Thus in this interval if a-values there are three types of 
trajectory, shown schematically in figure 7. Positive values of D correspond to open 
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FIGURE 6. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane ( X I  = 0) for a, < a < 1. Trajectory (a) is an example of an open 
trajectory, (b) of a unidirectional trajectory, (c) of a trajectory of finite length, (d, e )  are the limiting 
trajectories . 

4 

FIGURE 7. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane ( X I  = 0) for a* < a < a;: (a) an example of an open trajectory, (b) 
of a closed trajectory, ( c )  of a trajectory of finite length, (d,  e) correspond to the limiting trajectories. 

trajectories. Values of D in the interval D* < D < 0 correspond to the closed 
trajectories. Values of D in the interval D, < D < D* correspond to trajectories of 
finite length. For 01 = 0.4 and p = 0.354 the trajectory constants of finite-length 
trajectories lie in the interval -0.709 < D < -0.316. 



Trajectories of charged tracer particles 199 

FIGURE 8. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane for @' < CL < a*: (a) an example of an open trajectory, (b) of a 
closed prolate trajectory, ( c )  of a closed oblate trajectory, ( d )  of an internal closed prolate trajectory, 
(e)  of a trajectory of finite length r1 and rp are the radii of the circle which separate closed prolate 
trajectories from closed oblate ones; cf-i) are limiting trajectories. 

Case (iv) $J3 < a < a* 
If the value of a becomes less than a* = [(1+-/3):- 11, new types of trajectories 

appear because in this case the radial component of the velocity, drldt, can change sign 
in the first quadrant. When the value of a is in the interval $J3 < a < a*, the function 
h(r) has two zero points with coordinates rl and r2.  In the interval between these two 
zero points, the function h(r) is negative and thus dr/dt is negative in the first 
quadrant. This means that two new limiting trajectories have appeared. These 
trajectories are circles of radius rl and r2,  respectively. Closed trajectories located 
between these two circles have an oblate shape because X p a Z  > X r a s  (XFu2: being the 
maximum distance of separation in the i-direction). 

Thus in this case there are four types of trajectory, shown schematically in figure 8 : 
open, closed prolate, closed oblate and finite-length trajectories. D > 0 corresponds to 
the usual open trajectories, -(1 +a)g(r,) < D < 0 corresponds to closed prolate 
trajectories, - (1 + a)  g(rJ < D < - (1 + a) g(rl) corresponds to the closed oblate 
trajectories, D* < D < - (1 +a) g(r,) corresponds to a second set of closed prolate 
orbits, while D, < D < D* corresponds to finite-length trajectories. 

Case (v) - 1 < a < :,4 
A decrease in a leads to a decrease in the radius of the inner circular trajectory. When 

a becomes equal to $I3 (uncharged tracers around a charged sphere), the inner circle 
disappears. The trajectories for smaller values of a, i.e. for the interval - 1 < a < $, 
are presented schematically in figure 9. It can be seen that closed oblate and finite- 
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FIGURE 9. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane for - 1 < CY < $/3: (a) an example of an open trajectory, (b) of a 
closed prolate trajectory, (c) of a closed oblate trajectory, ( d )  of a trajectory of finite length, (e-g) 
correspond to the limiting trajectories. 

length trajectories are located inside the circle of radius r2 .  The finite-length trajectories 
have shifted to q5 = 0, n. The limiting trajectory separating trajectories of finite length 
from closed ones passed through the point ( r  = 1, C#I = +IT). The trajectory constant of 
this limiting trajectory, D,, equals - (1 +a) g( 1) and, according to figure 2, is positive. 

As in the previous case, D > 0 corresponds to open trajectories and 

-(1 +a)g(Y2) < D < 0 

corresponds to closed prolate trajectories ( D  = - (1 + a) g(r,)  being the circular 
trajectory). The oblate closed orbits are characterized by 

- (1 +a) g(rJ < D < 4, 
while the finite-length trajectories correspond to D, < D < D". The case a = p = 0 
(neutral tracer particles around a neutral sphere) is a limiting case of this range of a- 
values, where r2 = 1 and no oblate closed orbit nor finite-length trajectories exist. 

Case (vi) a < - 1 
When a approaches the value of - 1 (but a > - l), the time it takes for a tracer 

particle to complete (half) a closed orbit approaches infinity. When a = - 1, tracer 
particles can no longer cross the X,-axis when moving along a closed orbit, which 
indicates the disappearance of closed orbits. Thus the trajectories for a < - 1 are 
quantitatively different from those with a > - 1. Besides the disappearance of closed 
orbits, several stagnation points appear. According to (34) and (25),  the curve at which 
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FIGURE 10. Trajectories (schematic) of a charged tracer particle around a charged sphere in a simple 
shear flow in the equatorial plane for CL < - 1 : (a) an example of an open trajectory, (b) of a returning 
trajectory, (c) of a bidirectional trajectory of finite length, (d) of a unidirectional trajectory of finite 
length, (e) of a unidirectional trajectory of finite length symmetrical around the X,-axis, (A g-i) 
correspond to the limiting trajectories, (h) to the line where d+/dt equals zero, and ( j )  is a stagnation 
point. 

d$/dt = 0 extends to r = co when CL < - 1. When this curve intersects with the circle 
r = r,, for which dr/dt = 0, we have a stagnation point. Since the curve d$/dt has four 
branches, one in each quadrant, four stagnation points appear when a < - 1. The 
coordinates of these stagnation points are (r2,  $J, with $s determined by 

cos 2$s = - [ 1 -(I + a)/r;]-l. (39) 

The presence of these stagnation points results in a new type of trajectory which we call 
open returning trajectories. They are characterized by a tracer particle approaching the 
sphere from infinity, then turning around and separating towards infinity in the same 
direction that it came from. This is a result of the large electrodynamic repulsion 
between the tracer particle and the sphere. 

The various trajectories for a < - 1 are shown in figure 10. It can be seen that we 
have two types of open trajectories - regular separating trajectories and returning 
trajectories - and there exist finite-length trajectories. If the source of the finite-length 
trajectory is located on the sphere in the interval of $-angles give by $* < $ < $,,, with 
$cr given by (34), and $* by 

(40) 

The tangential component of velocity of the tracer particles moving along this 
trajectory changes sign. We will call these trajectories ‘ bidirectional finite-length 
trajectories ’ in order to distinguish them from ‘unidirectional finite-length trajectories ’ 
characterized by the same sign of d$/dt at each point of the trajectory. 

The various limiting trajectories, i.e. those dividing the open separating trajectories 
from open returning ones, those dividing open separating trajectories from finite- 
length trajectories and those dividing the bidirectional trajectories from unidirectional 

cos $* = f(1) [(I + a) (g(1) -g( rd l t  
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ones symmetrical about the X,-axis, are all characterized by the same trajectory 
constant Dlim = - (1 + a)g(r,). Values of D > DlinL can correspond to various types of 
trajectory depending on the initial position of the tracer particle. The unidirectional 
finite-length trajectories, symmetrical around X,, are characterized by Dlim < D < D*, 
the bidirectional finite-length trajectories by D* < D < Of,  the unidirectional finite 
length trajectories, symmetrical around X, ,  by D, < D < Dlim, and returning 
trajectories by D > Dlim. 

When a approaches - 1 (but a < - l), q5cr + ktn ,  the four stagnation points become 
two points located at ( y g ,  +in), the finite-length trajectories symmetrical around the 
X,-axis disappear and the finite-length trajectories symmetrical around the X,-axis in 
quadrants 4 and 1 join those in quadrants 2 and 3. They become the closed oblate 
trajectories when a > - 1. The returning trajectories collapse into the X,-axis and 
disappear, causing some open trajectories to become closed orbit. Hence although the 
trajectories around the sphere for a < - 1 look rather different from those for which 
a > - 1, a smooth transition between them occur when a passes through - 1. 

We have shown that the trajectories of charged tracer particles around a charged 
sphere show a surprising richness of possibilities, despite the fact that the trajectory 
equations appear rather similar to those for uncharged particles. Several new types of 
trajectory (closed oblate, bi- and unidirectional finite-length, returning, and uni- and 
bidirectional infinite-length trajectories) have appeared, due to the influence of surface 
charge. Other new features are the existence of stagnation points for some values of the 
parameters. 

4. Three-dimensional trajectories of charged tracer particles 
It was shown in the previous section that the surface of a charged sphere rotating in 

a shear flow contains sources and sinks of trajectories of charged tracer particles. It 
follows from the analysis of the two-dimensional trajectories in the equatorial plane 
that tracer particles end up on the equator in the second and the fourth quadrants when 
a > g/?l and in the first and the third quadrants when a < gj3. 

Analysis of two-dimensional trajectories cannot provide an answer to the question 
about the stability of the sinks in the equatorial plane. To answer this question the 
direction of the tangential component of the tracer particle velocity, dO/dt, on the 
surface of the sphere (Y = 1) has to be taken into account. According to (3b) 

(41) 
It can be seen that this velocity component has opposite directions for positive and 
negative values of a. Consequently the stability of sinks in the equatorial plane depends 
on the value of a. The condition of stability is governed by the value of d8/dt when 
8 crosses the equatorial plane (8 = in). The location in the equatorial plane will be 
stable if d8ldt changes sign from positive to negative. In such a case a tracer particle 
slightly displaced from the equatorial plane will return back to the equator. If the 
change in d8/dt is opposite, the position on the equator will be unstable and the tracer 
particles will move to the north pole (8 = 0) or to the south pole (@ = n) of the sphere. 
Depending on the value of a, we can distinguish three different cases. 

Case (i) a > g/?l 
According to the argument above, the location of a tracer particle on the equator is 

stable in the second and the fourth quadrants. These locations .of the tracer particles 
are shown in figure l l (a)  by thick solid lines. 

d8/dt = - iGa sin 28 sin 255. 
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FIGURE 1 1 .  Stable locations of charged tracer particles on the surface of a charged sphere in a simple 
shear flow (schematic), indicated by solid lines or dots. (a) a > $3; (b) 0 < u < gp; (c )  cc < 0. 

Case (ii) 0 < 01 < $p 
In this case the location of the tracer particles on the equator is unstable. The tracer 

particles concentrate at the north and south poles of the sphere, as shown in figure 
11 (b) by solid dots. 

Case (iii) CL < 0 
The location of the equator is stable in this case, but the tracer particles concentrate 

on the first and the third quadrants instead of the second and fourth quadrants. This 
is shown in figure 11 (c) by thick solid lines. 

5 .  Conclusions 
The influence of surface charge on the relative trajectories of tracer particles around 

a sphere subjected to a simple shear flow results in qualitative changes in the nature of 
the trajectories of the tracer particles compared with uncharged particles. Closed 
orbits, one of the two types of trajectory of an uncharged tracer particles around an 
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uncharged sphere, exist only for a limit range of <-potentials of the sphere and tracer 
particles. New types of trajectory for the tracer particles appear, due to the influence 
of the surface charge. Trajectories of finite length, which start and end on the surface 
of the sphere, exist because the relative velocity of the tracer particles is not equal to 
zero on the surface of the charged sphere. Instead, this velocity equals the velocity of 
electro-osmotic slip in the double layer of the charged sphere. 

Trajectories of finite length can be either bidirectional or unidirectional, depending 
on the sign of the tangential velocity d$/dt. If the sign of d@/dt does not change along 
the trajectory of finite length, the trajectory is referred to as unidirectional. Bidirectional 
trajectories are not likely to be encountered in real systems because they are 
characterized by an unrealistically high value of the {-potential. Bidirectional 
trajectories exist when la1 > 1. 

For quite realistic values of the <-potentials, closed trajectories can change their 
shape due to the influence of the surface charge of the sphere and the tracer particles. 
Ordinary closed trajectories have a prolate shape. But for many realistic values of the 
<-potentials closed trajectories have an oblate shape. 

For large negative values of a, returning trajectories can exist. But it appears to be 
almost impossible to prepare disperse systems with high enough {-potentials to observe 
this type of trajectory. 

The surface of a charged sphere in a simple shear flow contains sources and sinks of 
the tracer particles. If the {-potential of the tracer particles has a sign opposite to that 
of the sphere, the tracer particles end up on the equator in the second and the fourth 
quadrants of a Cartesian coordinate system. If the <-potential of the tracer particles has 
the same sign as that of the sphere, but is less in absolute value, the tracer particles end 
up on the poles of the sphere. If the <-potential of the tracer particles has the same sign 
as the <-potential of the sphere, and is larger in absolute value, the tracer particles end 
up on the equator of the sphere in the first and the third quadrants. 

The equations used to describe the relative motion of the particles do not contain the 
radius of the tracer particle. A very similar system of equations can be used to describe 
the relative motion of two spheres of equal size at large separations (i.e. the leading 
order of an expansion in the small parameter a/r ,  where a is the radius of the sphere). 
Only the dependence of the parameter a on the <-potential will change because uef will 
be different. Thus the conclusions obtained in this paper for unequal-sized spheres with 
aJa,  < 1 can be applied to monodisperse systems if the distance between particles 
centres is sufficiently large. 

Experimental observations of the types of trajectory described here appear to be 
difficult. For a large colloidal sphere with a diameter of a few microns, the tracer 
particle must be a fraction of a micron. Observing such spheres while they are in 
motion is not easy, but conceivably could be done using a travelling microtube 
apparatus (Vadas, Goldsmith & Mason 1973). It is, however, much easier to observe 
these electroviscous effects indirectly, e.g. by measuring the rate of deposition of small 
particles onto large ones in a simple shear flow. Obviously in this case the short-range 
interactions have to be considered as well. 
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